Distributed Lagrangian Relaxation Protocol for the Over-constrained Generalized Mutual Assignment Problem
نویسندگان
چکیده
The Generalized Mutual Assignment Problem (GMAP) is a distributed combinatorial optimization problem in which, with no centralized control, multiple agents search for an optimal assignment of goods that satisfies their individual knapsack constraints. Previously, in the GMAP protocol, problem instances were assumed to be feasible, meaning that the total capacities of the agents were large enough to assign the goods. However, this assumption may not be realistic in some situations. In this paper, we present two methods for dealing with such “over-constrained” GMAP instances. First, we introduce a disposal agent who has an unlimited capacity and is in charge of the unassigned goods. With this method, we can use any off-the-shelf GMAP protocol since the disposal agent can make the instances feasible. Second, we formulate the GMAP instances as an Integer Programming (IP) problem, in which the assignment constraints are described with inequalities. With this method, we need to devise a new protocol for such a formulation. We experimentally compared these two methods on the variants of Generalized Assignment Problem (GAP) benchmark instances. Our results indicate that the first method finds a solution faster for fewer over-constrained instances, and the second finds a better solution faster for more over-constrained instances.
منابع مشابه
Adaptive price update in distributed Lagrangian relaxation protocol
Distributed Lagrangian Relaxation Protocol (DisLRP) has been proposed to solve a distributed combinatorial maximization problem called the Generalized Mutual Assignment Problem (GMAP). In DisLRP, when updating Lagrange multipliers (prices) of goods, the agents basically control their step length, which determines the degree of update, by a static rule. A merit of this updating rule is that sinc...
متن کاملThe Lagrangian Relaxation Method for the Shortest Path Problem Considering Transportation Plans and Budgetary Constraint
In this paper, a constrained shortest path problem (CSP) in a network is investigated, in which some special plans for each link with corresponding pre-determined costs as well as reduction values in the link travel time are considered. The purpose is to find a path and selecting the best plans on its links, to improve the travel time as most as possible, while the costs of conducting plans do ...
متن کاملOn Lagrangian Relaxation and Reoptimization Problems
We prove a general result demonstrating the power of Lagrangian relaxation in solving constrained maximization problems with arbitrary objective functions. This yields a unified approach for solving a wide class of subset selection problems with linear constraints. Given a problem in this class and some small ε ∈ (0, 1), we show that if there exists an r-approximation algorithm for the Lagrangi...
متن کاملOn Lagrangian Relaxation and Subset Selection Problems
We prove a general result demonstrating the power of Lagrangian relaxation in solving constrained maximization problems with arbitrary objective functions. This yields a unified approach for solving a wide class of subset selection problems with linear constraints. Given a problem in this class and some small ε ∈ (0, 1), we show that if there exists a ρ-approximation algorithm for the Lagrangia...
متن کاملA New Approach to Distributed Task Assignment using Lagrangian Decomposition and Distributed Constraint Satisfaction
We present a new formulation of distributed task assignment, called Generalized Mutual Assignment Problem (GMAP), which is derived from an NP-hard combinatorial optimization problem that has been studied for many years in the operations research community. To solve the GMAP, we introduce a novel distributed solution protocol using Lagrangian decomposition and distributed constraint satisfaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011